
WCCM V
Fifth World Congress on

Computational Mechanics
July 7–12, 2002, Vienna, Austria

Eds.: H.A. Mang, F.G. Rammerstorfer,
J. Eberhardsteiner

Generic programming for mesh algorithms: Implementing
universally usable geometric components

Guntram Berti

C&C Research Laboratories
NEC Europe Ltd., Rathausallee 10, 53757 St. Augustin, Germany

e-mail: berti@ccrl-nece.de

Key words: Generic programming, reusable software components, geometric algorithms, mesh data
structure abstractions

Abstract
Geometric functionality is crucial for a variety of application domains, including computational
mechanics. Typically, geometric tasks are embedded into a larger problem frame. Due to the diversity
of tasks, geometric tools must often be combined to achieve the desired solution. As implementing
geometric algorithms is difficult and time-consuming, reusing them is highly desirable. Unfortunately,
traditional implementations are intimately tied to the underlying representations of the geometric data,
and hence are not directly usable in a different context. Conventional approaches to implementing
geometric tools are thus limited to copying the data via an API (or to a file), and calling an external
routine (or application) application implementing the desired functionality or even implementing an
ad-hoc solution, and have obvious drawbacks in terms of efficiency, composability, scalability or quality.
Here, we present a radically different approach, concentrating on the case of algorithms working on
cellular structures, for example meshes (tesselations, grids) of surfaces and solids. Exploiting the
common underlying mathematical structure we define an abstract interface capturing this mathematical
notion. Algorithms are implementedgenericallyon top of this interface, thus making the implementa-
tions independent of any concrete representation issues. Special emphasis is placed on a separation of
combinatorial and geometric aspects and on a general framework for associating arbitrary data to mesh
entities of any dimension. A wide variety of reusable geometric tools is implemented in the open source
C++ library GRAL. They can be combined and nested in very flexible ways to solve geometric task
arising in computational mechanics, independently of the underlying data structures. We conclude by
discussing some practical issues of the generic approach, including the quite competitive efficiency of
generic components.



Guntram Berti

1 Introduction

Geometric algorithms play an important role in computational mechanics. Starting with the preparation
of a geometric model, a suitable mesh (e. g. for finite element computations) has to be generated, and
its quality must be assured. Specification of boundary conditions may involve complex computations
like detecting mesh intersections for contact problems. For Lagrangian approaches, the mesh has to be
updated and its quality continuously monitored. Besides these standard tasks, there occur a lot of special
geometric problems requiring ad-hoc solutions.

Geometric softwareper seis widely available, both free and commercial. However, the traditional design
of geometric (and also other scientific) software libraries severely constrains their use in adifferent
context, for instance in computational mechanics. Why? Implementations of algorithms must make some
assumptions on the data they are operating on. The more complex the data, the more assumptions are
made, and the stronger the ties to a specific representation. Now geometric data, such as meshes, are
rather complex entities, and therefore geometric libraries either define their own set of data structures (e.
g. CGAL [1]), or they operate on some “standard” – often low-level array-based – representations, for
example the code of graphics gems (e. g. [2]).

Now, simulation applications in general have their own geometric representations, often tuned towards
computational needs, such as FEM meshes. If a geometric library such as discussed above are to be used
on these representations, one has to copy the data. This leads to programming overhead, performance
penalties and also to memory bottlenecks, as data sets in these simulations tend to be large. For local or
incremental algorithms, e. g. point location, the overhead may be prohibitive. As a consequence, geo-
metric algorithms are re-implemented over and over, with all the well-known drawbacks for productivity
and code quality.

To overcome these problems, we propose a radically different approach for implementing geometric
libraries, which is applicable to other algorithmic libraries, too. Algorithm implementations are no longer
accessing low-level data layout details directly, but through a concise abstract interface. Then, algorithms
can work generically on a broad range of data structures supporting the interface. In the following, we
show how to design such an interface for cellular structures like finite element meshes, and how to
define algorithms on top of this interface. By using the template feature ofC++, we provide the compiler
with sufficient information to optimize out most of the potential abstraction overhead. In this way, we
achieve a complete decoupling of algorithms from data structures while maintaining a very competitive
performance.

The approach owes a lot to theC++ STL [3], which provided the initial idea. Related work has been
accomplished e. g. in the field of graphs [4] or image processing [5]. In the field of computational geom-
etry, the CGAL library [1] comes closest to our approach, yet many of its algorithms are not as generic
as they could be.

The outline of this paper is as follows: First, we introduce the generic programming approach for mesh
data structures. Next, we show how typical geometric tasks arising in computational mechanics can
be solved by using generic geometric tools. Finally, we discuss some practical aspects of the generic
approach.

2



WCCM V, July 7–12, 2002, Vienna, Austria

2 The Generic Programming Approach for Cellular Structures

A standard interface “sitting” between algorithms and data structures is subject to several constraints:
First, it must satisfy the functionality requirements of a (hopefully very large) class of algorithms. As
high-level descriptions of algorithms are generally referring to a common underlying mathematical struc-
ture – in our case, cellular complexes, which we will describe below – the aim to provide a faithful
representation for this structure turns out to be a useful guiding principle for interface design. As data
structures are in general compromises between efficiency and completeness, the interface must be fine-
grained enough to cope with diverging capabilities of mesh representations. On the other hand, it should
be simple enough to be easy to learn and implement. Last but not least,efficientgeneric implementations
of algorithms must be possible on top of the interface.

There are two reasons in favor of alayeredgrid interface: First, the fact that many algorithms can do
with a very simple interface, while some need a more sophisticated one. And second, the hierarchy of
mathematical concepts beneath the most general definitions. For example, consider point location which
can be implemented much more efficiently on a Cartesian than on a general grid. But it has to exploit
special structure not accessible through the general interface. The generic approach offers a natural way
for dealing with this situation: We mayspecializethe algorithm for the concrete special data structure and
make use of the additional information. Thus, specialization – a key ingredient of generic programming!
– reflects the ramifications of the underlying mathematical concepts. The next logical step is to develop
an additional interface layer capturing the essence of Cartesian grids, and to make the specialization work
onall representations for this abstract concept. Thispartial specializationis directly supported byC++.

In the following, we give a very short overview of a simple abstract interface for geometric meshes
(cellular complexes), together with two extension layers: First, additional information on local structure
using cell archetypesand theswitch operator introduced in [6], and second, coarse-grained mutating
primitives for grids. We begin by defining the underlying mathematical concepts.

Definition 1 (Abstract complex) An abstract finite complexC of dimensiond is a set ofelementse,
together with a mappingdim : C 7→ {0, . . . , d} ⊂ N, (dim(e) is called the dimension ofe), and a partial
order< (side-ofrelation) withe1 < e2 ⇒ dim(e1) < dim(e2). Elements are named according to table
1. A morphismbetween abstract complexesC1, C2 is a mappingΦ : C1 7→ C2 with e < f ⇒ Φ(e) <
Φ(f).

An abstract complex is a purely combinatorial entity, also known asposet(which in many important
cases is even alattice). We need the notion of a geometric complex, too:

Definition 2 (Geometric realization of an abstract complex)A geometric realization (or embedding)
Γ of an abstract complexC is a mapping into a Hausdorff space‖C‖ such that

Γ : C 7→ Γ(C) = ‖C‖ =
⋃
e∈C

Γ(e) with

e1 < e2 ⇔ Γ(e1) ⊂ ∂Γ(e2) and ∂Γ(e2) =
⋃
e1<e2

Γ(e1) ∀e1, e2 ∈ C

In the following, we will use the terms complex, grid and mesh interchangeably. An analysis of a number
of mesh algorithms reveals a recurring pattern: The required functionality can be classified ascombinato-
rial , relating to the abstract complex,geometric, anddata association, i. e. storing data on grid elements

3



Guntram Berti

Table 1: Combinatorial grid entities
Element dim codim Sequence Iterator

Vertex 0 d VertexIterator

Edge 1 d− 1 EdgeIterator

Face 2 d− 2 FaceIterator

Facet d− 1 1 FacetIterator

Cell d 0 CellIterator

Table 2: The full set of incidence and adjacency (A) iterators in 3D

VertexOnVertexIt (A) VertexOnEdgeIt VertexOnFacetIt VertexOnCellIt

EdgeOnVertexIt EdgeOnFacetIt EdgeOnCellIt

FacetOnVertexIt FacetOnEdgeIt FacetOnCellIt

CellOnVertexIt CellOnEdgeIt CellOnFacetIt CellOnCellIt (A)

(grid functions). Fig. 1 is a simple but typical example. Furthermore, there is functionality related to
modifying a grid, discussed afterwards. We will not discuss the interface in technical detail, see fig. 2 for
an example and [7] for detailed documentation.

OUT: surface:Gd 7→ R

for all Cellsc ∈ Gd do
surface(c) = 0
for all Facetsf of C do

surface(c) += volume(f )

Figure 1: A simple algorithm . . .

grid_function<Cell,double> surface(Grid);

for(CellIterator c(Grid); c; ++c) {

surface[c] = 0.0;

for(FacetOnCellIterator f(c); f; ++f)

surface[c] += Geometry.volume(f);

}

Figure 2: . . . and its generic implementation

2.1 The Basic Combinatorial Interface

At a very basic level, a grid is a set of sequences of itselements: A sequence of its vertices, of its edges,
and so on. We can model this property by introducinggrid sequence iteratorswhich just have the standard
(STL) iterator interface. The naming of elements with respect to either dimension of codimension (see
table 1) allows for dimension-independent implementations of some algorithms, e. g. figure 2. A minimal
representation of an element of a fixed grid is calledelement handle, which may be simply an integer.
Handles are useful e. g. for representing subranges.

In order to access the incidence relationship, we needincidence iterators(table 2). These allow for
example to access the sequence of all vertices of a cell (VertexOnCellIterator), see fig. 3. A related
concept areadjacency iterators, which relate elements of the same dimension. We define them only for
vertices and cells, lacking a “natural” definition for the intermediate dimensions.

This interface is fine-granular enough to cater for different capabilities of grid data structures: If a partic-
ular incidence relationship is not readily available, just skip the corresponding iterator. Also, it does not
impose that anything at all is stored, which is important for implicitly given grids like Cartesian ones.

4



WCCM V, July 7–12, 2002, Vienna, Austria

2

3
1

4

Figure 3: Action of aVertexOnCellIterator
(Incidence iterator)

2
1

3
4

Figure 4: Action of aCellOnCellIterator (Ad-
jacency iterator)

2.2 The Grid-Geometry Interface

Grid geometries represent geometric realizations (embeddings) of combinatorial grids. Thus, they map
combinatorial to geometric entities of corresponding dimensions: Vertices to points, edges to arcs, etc.
The grid geometry interface is open for additional properties or measures, for example lengths of edges,
thus entailing better encapsulation of geometric decision: If edge lengths are computed in client code
under the implicit assumption of linear segments, it would fail to profit from pre-calculated edge lengths,
or would break for, say, isoparametric elements of higher order.

The separation from the combinatorial grid layer has a number of practical advantages. It allows to reuse
the same combinatorial grid data structure with different embeddings (and vice versa!), for example 2D
domain and 3D surface grids. We can also maintain different geometries for the same grid simultane-
ously, for instance use straight edges for FEM computation, and curved edges on the boundary for grid
refinement, or we can employ exact arithmetic just for some geometric algorithms requiring it.

2.3 The Grid Function Interface

Almost every algorithm needs to store and access data on grid elements of any dimension. This is sup-
ported bygrid functions. Grid functions can betotal (dense), that is, explicitly stored on each element, or
partial (sparse), that is, having a default value for most elements. Partial grid functions are essential for
the efficient implementation of local algorithms. For both variants exist generic default implementations
in GRAL, see also [8].

In these implementations, the storage of this application-dependent data is decoupled completely from
the combinatorial grid data structure, such that arbitrary types of data can be stored on a given grid.
This decoupling is crucial to avoid data structures needing to know about the algorithms using them –
which would be even worse than the inverse coupling we overcame with the generic approach! Thus, it
is important to recognize grid functions as a separate concept. Yet, one can often find this coupling in
object-oriented implementations of grid data structures, where for instance state information is stored in
vertex objects.

2.4 Mutating Primitives

The interface presented so far allows only read access to meshes. Sometimes, however, we need to change
the grid: The simplest case occurs if we read the grid from some file, or copy it from another grid. Also,
for refinement, coarsening or optimization, the mesh has to be changed.

5



Guntram Berti

In search of a general solution which allows efficient implementations for a large class of data structures,
we found that in virtually all cases we investigated it proved sufficient to usecoarse grainedmutating
primitives (in contrast toatomicprimitives like Euler operators [9]). We can do with just three of them:
Copying grids, enlarging (gluing) grids, and removing parts of a grid. These primitives maintain agrid
isomorphismbetween the source and the copy, in order to allow the transfer of additional information,
such as grid functions. Mutating primitives are discussed in more detail in [10] and [11].

The copy primitive can be seen as a generalized constructor, and it can be used to implement transparent
file I/O or data structure conversion, necessary for using traditional libraries with an API or file coupling.
To this end, an input adapter having a (minimal) grid interface and an output adapter is implemented for
each file format. Reading the file is achieved by copying from the input adapter, and writing is equivalent
to copying to the output adapter. An example in GRAL is the output adapter for the OFF format used by
GEOMVIEW [12].

A generic copy operation is not as straightforward as it might seem: For instance, different applications
often have different conventions for numbering 3D cell vertices. In order to copy from one numbering to
another, we need to calculate a grid isomorphism between the two cell representations (or more precisely,
theirarchetypes, see below). There is a generic algorithm in GRAL for this task.

2.5 Enhanced Combinatorial Interface

Incidence iterators provide enough combinatorial information for a surprisingly large class of algorithms.
However, there is no ordering relationship between different incidence iterators; for example in 2D,
vertices and edges incident to a cell can be ordered independently.

If we need such relationships, we can use theswitchoperator, which exploits the lattice structure of a
grid’s poset. This operator allows e. g. to traverse a connected component of a grid’s boundary (see [10]
for details), or to investigate a corner of a cell, see section 3.1 below. Second, the boundary of a cell (its
archetype) can be accessed as a grid of dimensiond− 1, thus making local vertex numbering explicit. A
correspondingarchetype geometrydefines local coordinates on a cell. In a typical FEM mesh, there are
only few different archetypes, meaning that calculations which can be performed om archetypes (such as
isomorphisms) can be reused for a large number of cells. The interface for switch and archetypes is still
work in progress.

3 Reusable Geometric and Topological Components

Geometric or topological (combinatoric) problems occur over and over in computational mechanics,
for instance related to boundary conditions or mesh handling. Often, these tasks require rather ad-hoc
solutions, such that no general library can provide ready-made solutions. What a librarycan provide,
however, is a well-designed, extensible set ofstandardtools which can be combined to solve thesenon-
standardtasks. The generic approach we have introduced supplies a good framework for developing
combinable tools; it forms the nucleus of a high-level language which can greatly simplify problem
solution. The framework not only guarantees to a certain extent a common language of tools to ensure
their syntactic composability, it also ensures that the iterative composition of tools still results in efficient
components, which is a problem with standard approaches.

In the following, we discuss a few examples of tasks arising in computational mechanics and show how
a solution can be built up from more general components. Among standard tools implemented in GRAL

6



WCCM V, July 7–12, 2002, Vienna, Austria

are algorithms for generating incidence information (cell-neighbor search), traversal of boundary com-
ponents (also for inner boundaries), grid subranges and their closures (e. g. vertices of a cell range), see
[11] for more information. As these tools adhere to the language of grid(ranges) and the corresponding
iterators sketched before, they are thus quite natural to use.

3.1 Mesh Quality Checking

Monitoring (and enhancing) mesh quality can be used to check the output of mesh generators, for ill-
shaped and invalid cells, and is of special importance for Lagrangrian approaches, where the mesh de-
forms and gradually degrades.

A number of mesh quality measures are in use; here, we follow an approach introduced in [13], where
also the relationship to other quality measures is discussed. The measure evaluates the condition number
of matrices formed by the directions of edges around a vertex of a cell. Thus, it works for cell types
which aresimplepolytopes (like hexahedrons and tetrahedrons), i. e. each vertex has degree 3 on the
cell’s surface mesh. For tetrahedrons, a weighting matrix has to be included, as the ideal corner is that of
a regular tetrahedron.

�v

v1

v2

v3

Figure 5: directions formingA(v) Figure 6: Halo positioning task

More formally, letv be a vertex of a cellc, andv1, v2, v3 be the 3 vertices ofc adjacent tov. We set
ei = Γ(vi) − Γ(v), Γ being the grid geometry, andA(v) = (e1, e2, e3) (cf. figure 5). Then we want to
calculate the quantity

Kc(v) = κ(A(v)) (1)

whereκ(A) = ‖A‖‖A−1‖ is the condition number.

The algorithm for computingK(v) can be broken down into the following steps, givenv andc:

1. get the verticesvi

2. set up the matrixA(v) = (e1, e2, e3)

3. calculate the condition numberκ(A(v))

Step 2 is straightforward. Step 3 can be solved in a generic way by generic algebraic components, which
will not be discussed here. The challenging part for ageneric implementation is step 1, because we
cannot rely on a a-priori known way of numbering the vertices of a cell. For hex cells, there are8!/24
ways of numbering the vertices, unique up to a rotation. Here, cell archetypes and the switch operator

7



Guntram Berti

play a crucial role: Using switch, we can find the adjacent vertices for all vertices of a cell. By doing
this in a preprocessing step on the cell archetypes, we need to perform this search only once for each
archetype, and not for each cell.

As step 1 is a potentially useful building block also for other algorithms, we encapsulate it into a com-
ponent which delivers the ordered sequence of adajacent vertices of any vertex of a given cell. More
generally, this component also gives access to the corresponding sequence of edges and faces incident to
both c andv. In lattice terminology, this set of edges and facets is called theinterval [v, c]; it could be
used e. g. for determining the solid angle atv.

3.2 Geometric Specification of Boundary Conditions

Handling boundary conditions often is a tedious task involving lots of manual interaction. In the specific
example at hand occurring in maxillo-facial surgery within the SimBio project [14], we want to calculate
the stress distribution of a human skull to which a so-calledhalo deviceis fixed with screws (see fig. 6).
Both halo and head data are given as voxel images. The task involves finding the locations where the
halo screws penetrate the skull. For this purpose, we model the screws as cylinders and their axes as rays
pointing towards the skull, leading to the following steps:

1. Determine the screw data (ray and thickness) from the voxel data

2. extract the skull surface from the volume mesh built from the voxel data

3. Find the intersection of rays with the skull surface

4. Find the vertices or cells in vincinity of the intersections which are intersected by the corresponding
cylinder

Again, each step in itself does not pose insurmountable problems. However, programming everything
from scratch would be very tedious, so we want to find a way of combining standard tools to achieve the
desired results.

Step 1 has been performed manually, as the halo geometry is considered stable, in contrast to the skull
data taken from individual patients. Step 2 requires to find facets at a material boundary, and so facet-
cell incidence information is needed. The latter can be calculated using a generic cell neighbor search
algorithm which is a standard component of GRAL. Step 3 can be performed by a generic algorithm cal-
culating intersections of rays (or lines) with a grid. Such a tool is useful in a broad range of applications,
for instance computer graphics. A basic building block of this routine is a ray-triangle (or ray-polygon)
intersection component, which is part of generic geometric primitives, not discussed here.

Finally, step 4 requires the ability to perform a traversal of the neighborhood of a surface mesh cell, which
is possible if the surface mesh has cell-cell adjacencies. Instead of performing this traversal explicitly in
the application code, we use aview which gives us access to a maximal connected component that
includes some starting cell (here: the intersection cell) and all cells of which fulfil some predicate (here:
at least one vertex lies within the corresponding screw cylinder). The same component is also useful
when we decide to statically refine the neighborhood of the screw-skull intersection in the 3D volume
grid: Due to the dimension-independent implementation, we can reuse the same generic tool!

8



WCCM V, July 7–12, 2002, Vienna, Austria

4 Practical Issues: Questions and Answers

The viability of any software development approach has to be ultimately gauged by its practical usability,
no matter what its theoretical merits are. As a rather young technique, generic programming for data-
intensive scientific computing inavoidably still has some rough corners, but overall its practical value
appears to be considerable. We discuss a few decisive issues in a question & answer style:

Q: How much work is it to (re)use a generic component?

A: If generic components are to be used with one’s own data structures, one has first to create and
adaptation layer implementing the kernel interface as far as necessary. Afterwards,all generic
algorithms can be used without further effort. Be aware that the learning curve is quite steep!

Q: What restrictions does using generic components pose on the client (i. e. application) program?

A: Generic components can be used directly from C++ programs. For use in C/Fortran programs,
we have to create an additional wrapper layer around generic library routines. No changes to data
structures are needed in either case.

Q: How difficult is it to create generic library components with respect to conventional components?

A: In principle, there is no additional difficulty over conventional programming. One has to keep in
mind, however, that while implementing a generic component, one reuses a lot of intellectual work
spent on the development of the abstract concepts underlying the approach.

Q: What technical restrictions or risks are associated to using generic components?

A: We certainly have a stronger dependency on good tools (i. e. compilers). Generally compile-times
grow, error messages can be ugly, and support from 3rd party tools may not be as good as expected.
C++ templates do not fit into the traditional C/Unix library concept; solutions to these problems
(such as incremental compilers or concept checks) are emerging only slowly.

Q: Which quality can be expected of generic components, in particular efficiency?

A: Concerning efficiency, the overhead (known asabstraction penalty) can in theory be optimized
out. In practice this is compiler dependent and works for some examples, but for complicated stuff
we will notice some overhead with respect to direct implementations. In the vast majority of cases,
this overhead is absolutely tolerable, and with respect to API or file coupling discussed in the in-
troduction, generic components perform much better and in particular avoid memory bottlenecks.

In sum, we can say that using generic libaries certainly requires some familarity withC++ template
programming – such as can be gained by using the STL – but than it is definitely worth considering.

5 Conclusion

Generic programming for scientific, algorithm-dominated software is an emerging technology with a
great potential to boost productivity. The present work shows how to carry over this approach to the field

9



Guntram Berti

of geometric algorithms. It is one of the first approaches to achieveuniversallyusable algorithms in this
area, in the sense that there is no more dependency on arbitrary data representation issues.

In spite of some practical problems addressed in the preceding section, the overall progress achieved
by the generic approach is remarkable, and makes it ready for use in production code. One of its great
strengths is its seamless integrability into existing bodies of code.

Besides the practical advantages of better reuse of geometric components, generic programming makes
available an intellectual framework created during its development, consisting of a set of domain-specific
concepts which can guide and shape reasoning about geometric software.

References

[1] The CGAL Consortium,The CGAL home page, http://www.cgal.org (1999).

[2] A. S. Glassner, ed.,Graphics Gems, Academic Press (1990).

[3] M. Lee, A. A. Stepanov,The standard template library, Tech. rep., Hewlett-Packard Laboratories
(1995).

[4] J. Siek, L.-Q. Lee, A. Lumsdaine,BGL – the Boost Graph Library, http://www.boost.org/
libs/graph/doc/table_of_contents.html (2000).

[5] U. Köthe, VIGRA homepage, http://kogs-www.informatik.uni-hamburg.de/
˜koethe/vigra/ (2000).

[6] E. Brisson,Representing geometric structures ind dimensions: Topology and order, in Proc. 5th
Annu. ACM Sympos. Comput. Geom.(1989), pp. 218–227.

[7] G. Berti, GrAL – the Grid Algorithms Library, http://www.math.tu-cottbus.de/
˜berti/gral (2001).

[8] G. Berti,Generic components for grid data structures and algorithms with C++, in First Workshop
on C++ Template Programming, Erfurt, Germany(2000).

[9] M. J. Mäntyl̈a, Computational topology: a study of topological manipulations and interrogations
in computer graphics and geometric modeling, Acta Polytech. Scand. Math. Comput. Sci. Ser., 37,
(1983), 1–46.

[10] G. Berti, Generic software components for Scientific Computing, Ph.D. thesis, Faculty of mathe-
matics, computer science, and natural science, BTU Cottbus, Germany (2000).

[11] G. Berti,A generic toolbox for the grid craftsman, in W. Hackbusch, U. Langer, eds.,Proceedings
of the 17th GAMM Seminar on Construction of Grid Generation Algorithms, Online proceedings
athttp://www.mis.mpg.de/conferences/gamm/2001/ (2001).

[12] The Geomview homepage, http://www.geomview.org .

[13] P. M. Knupp,Matrix norms & the condition number: A general framework to improve mesh quality
via node-movement, in Proceedings of 8th International Meshing RoundTable, Lake Tahoe (1999),
pp. 13–22.

[14] The SimBio EU-IST Project, http://www.simbio.de (2000–2003).

10

http://www.cgal.org
http://www.boost.org/libs/graph/doc/table_of_contents.html
http://www.boost.org/libs/graph/doc/table_of_contents.html
http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/
http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/
http://www.math.tu-cottbus.de/~berti/gral
http://www.math.tu-cottbus.de/~berti/gral
http://www.mis.mpg.de/conferences/gamm/2001/
http://www.geomview.org
http://www.simbio.de

	Introduction
	The Generic Programming Approach for Cellular Structures
	The Basic Combinatorial Interface
	The Grid-Geometry Interface
	The Grid Function Interface
	Mutating Primitives
	Enhanced Combinatorial Interface

	Reusable Geometric and Topological Components
	Mesh Quality Checking
	Geometric Specification of Boundary Conditions

	Practical Issues: Questions and Answers
	Conclusion

